Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Autophagy ; : 1-2, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38597191

RESUMO

Proteostasis of the endoplasmic reticulum (ER) is maintained by coordinated action of two major catabolic pathways: proteasome-dependent ER-associated degradation (ERAD) and less characterized lysosomal pathways. Recent studies on ER-specific autophagy (termed "reticulophagy") have highlighted the importance of lysosomes for ER proteostasis. Key to this process are proteins termed reticulophagy receptors that connect ER fragments and Atg8-family proteins, facilitating the lysosomal degradation of both native and aberrant ER proteins in a relatively nonselective manner. In contrast, our recent work identified TOLLIP as a novel type of cargo receptor specifically dedicated to the lysosomal degradation of aberrant ER membrane proteins. The clients of TOLLIP include an engineered model substrate, which mimics an ER-retained aberrant membrane protein, and motor neuron disease-linked misfolded mutants of VAPB and BSCL2/Seipin. TOLLIP acts as a receptor to connect these aberrant ER membrane proteins and phosphatidylinositol-3-phosphate (PtdIns3P) by recognizing the former through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain, and the latter through its C2 domain. These interactions enable PtdIns3P-dependent vesicular trafficking of aberrant membrane proteins to lysosomes without promoting reticulophagic turnover of bulk ER.

2.
Nat Cell Biol ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424270

RESUMO

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

3.
EMBO J ; 42(23): e114272, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37929762

RESUMO

Endoplasmic reticulum (ER) proteostasis is maintained by various catabolic pathways. Lysosomes clear entire ER portions by ER-phagy, while proteasomes selectively clear misfolded or surplus aberrant proteins by ER-associated degradation (ERAD). Recently, lysosomes have also been implicated in the selective clearance of aberrant ER proteins, but the molecular basis remains unclear. Here, we show that the phosphatidylinositol-3-phosphate (PI3P)-binding protein TOLLIP promotes selective lysosomal degradation of aberrant membrane proteins, including an artificial substrate and motoneuron disease-causing mutants of VAPB and Seipin. These cargos are recognized by TOLLIP through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain. In contrast to ER-phagy receptors, which clear both native and aberrant proteins by ER-phagy, TOLLIP selectively clears aberrant cargos by coupling them with the PI3P-dependent lysosomal trafficking without promoting bulk ER turnover. Moreover, TOLLIP depletion augments ER stress after ERAD inhibition, indicating that TOLLIP and ERAD cooperatively safeguard ER proteostasis. Our study identifies TOLLIP as a unique type of cargo-specific adaptor dedicated to the clearance of aberrant ER cargos and provides insights into molecular mechanisms underlying lysosome-mediated quality control of membrane proteins.


Assuntos
Autofagia , Proteínas de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lisossomos/metabolismo , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(43): e2307118120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844241

RESUMO

In various epithelial tissues, the epithelial monolayer acts as a barrier. To fulfill its function, the structural integrity of the epithelium is tightly controlled. When normal epithelial cells detach from the basal substratum and delaminate into the apical lumen, the apically extruded cells undergo apoptosis, which is termed anoikis. In contrast, transformed cells often become resistant to anoikis and able to survive and grow in the apical luminal space, leading to the formation of multilayered structures, which can be observed at the early stage of carcinogenesis. However, the underlying molecular mechanisms still remain elusive. In this study, we first demonstrate that S100A10 and ANXA2 (Annexin A2) accumulate in apically extruded, transformed cells in both various cell culture systems and murine epithelial tissues in vivo. ANXA2 acts upstream of S100A10 accumulation. Knockdown of ANXA2 promotes apoptosis of apically extruded RasV12-transformed cells and suppresses the formation of multilayered epithelia. In addition, the intracellular reactive oxygen species (ROS) are elevated in apically extruded RasV12 cells. Treatment with ROS scavenger Trolox reduces the occurrence of apoptosis of apically extruded ANXA2-knockdown RasV12 cells and restores the formation of multilayered epithelia. Furthermore, ROS-mediated p38MAPK activation is observed in apically delaminated RasV12 cells, and ANXA2 knockdown further enhances the p38MAPK activity. Moreover, the p38MAPK inhibitor promotes the formation of multilayered epithelia of ANXA2-knockdown RasV12 cells. These results indicate that accumulated ANXA2 diminishes the ROS-mediated p38MAPK activation in apically extruded transformed cells, thereby blocking the induction of apoptosis. Hence, ANXA2 can be a potential therapeutic target to prevent multilayered, precancerous lesions.


Assuntos
Anexina A2 , Animais , Camundongos , Anexina A2/genética , Apoptose , Células Epiteliais , Epitélio , Espécies Reativas de Oxigênio
5.
Cell Rep ; 42(4): 112315, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37019112

RESUMO

Biomolecular condensates are membraneless structures formed through phase separation. Recent studies have demonstrated that the material properties of biomolecular condensates are crucial for their biological functions and pathogenicity. However, the phase maintenance of biomolecular condensates in cells remains elusive. Here, we show that sodium ion (Na+) influx regulates the condensate liquidity under hyperosmotic stress. ASK3 condensates have higher fluidity at the high intracellular Na+ concentration derived from extracellular hyperosmotic solution. Moreover, we identified TRPM4 as a cation channel that allows Na+ influx under hyperosmotic stress. TRPM4 inhibition causes the liquid-to-solid phase transition of ASK3 condensates, leading to impairment of the ASK3 osmoresponse. In addition to ASK3 condensates, intracellular Na+ widely regulates the condensate liquidity and aggregate formation of biomolecules, including DCP1A, TAZ, and polyQ-protein, under hyperosmotic stress. Our findings demonstrate that changes in Na+ contribute to the cellular stress response via liquidity maintenance of biomolecular condensates.


Assuntos
Condensados Biomoleculares , Osmorregulação , Íons , Transição de Fase
6.
J Biol Chem ; 299(2): 102837, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581206

RESUMO

A high-salt diet significantly impacts various diseases, ilncluding cancer and immune diseases. Recent studies suggest that the high-salt/hyperosmotic environment in the body may alter the chronic properties of cancer and immune cells in the disease context. However, little is known about the acute metabolic changes in hyperosmotic stress. Here, we found that hyperosmotic stress for a few minutes induces Warburg-like metabolic remodeling in HeLa and Raw264.7 cells and suppresses fatty acid oxidation. Regarding Warburg-like remodeling, we determined that the pyruvate dehydrogenase phosphorylation status was altered bidirectionally (high in hyperosmolarity and low in hypoosmolarity) to osmotic stress in isolated mitochondria, suggesting that mitochondria themselves have an acute osmosensing mechanism. Additionally, we demonstrate that Warburg-like remodeling is required for HeLa cells to maintain ATP levels and survive under hyperosmotic conditions. Collectively, our findings suggest that cells exhibit acute metabolic remodeling under osmotic stress via the regulation of pyruvate dehydrogenase phosphorylation by direct osmosensing within mitochondria.


Assuntos
Mitocôndrias , Pressão Osmótica , Oxirredutases , Piruvatos , Humanos , Células HeLa , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Fosforilação , Piruvatos/metabolismo , Células RAW 264.7 , Animais , Camundongos
8.
Sci Rep ; 12(1): 12636, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879519

RESUMO

Mutations within Superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS), accounting for approximately 20% of familial cases. The pathological feature is a loss of motor neurons with enhanced formation of intracellular misfolded SOD1. Homozygous SOD1-D90A in familial ALS has been reported to show slow disease progression. Here, we reported a rare case of a slowly progressive ALS patient harboring a novel SOD1 homozygous mutation D92G (homD92G). The neuronal cell line overexpressing SOD1-D92G showed a lower ratio of the insoluble/soluble fraction of SOD1 with fine aggregates of the misfolded SOD1 and lower cellular toxicity than those overexpressing SOD1-G93A, a mutation that generally causes rapid disease progression. Next, we analyzed spinal motor neurons derived from induced pluripotent stem cells (iPSC) of a healthy control subject and ALS patients carrying SOD1-homD92G or heterozygous SOD1-L144FVX mutation. Lower levels of misfolded SOD1 and cell loss were observed in the motor neurons differentiated from patient-derived iPSCs carrying SOD1-homD92G than in those carrying SOD1-L144FVX. Taken together, SOD1-homD92G has a lower propensity to aggregate and induce cellular toxicity than SOD1-G93A or SOD1-L144FVX, and these cellular phenotypes could be associated with the clinical course of slowly progressive ALS.


Assuntos
Esclerose Amiotrófica Lateral , Esclerose Amiotrófica Lateral/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
9.
Cell Death Discov ; 8(1): 195, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410407

RESUMO

Oxidative stress is a state in which the accumulation of reactive oxygen species exceeds the capacity of cellular antioxidant systems. Both apoptosis and necrosis are observed under oxidative stress, and we have reported that these two forms of cell death are induced in H2O2-stimulated HeLa cells depending on the concentration of H2O2. Weak H2O2 stimulation induces apoptosis, while strong H2O2 stimulation induces necrosis. However, the detailed mechanisms controlling the switching between these forms of cell death depending on the level of oxidative stress remain elusive. Here, we found that NAD+ metabolism is a key factor in determining the form of cell death in H2O2-stimulated HeLa cells. Under both weak and strong H2O2 stimulation, intracellular nicotinamide adenine dinucleotide (NAD+) was depleted to a similar extent by poly (ADP-ribose) (PAR) polymerase 1 (PARP1)-dependent consumption. However, the intracellular NAD+ concentration recovered under weak H2O2 stimulation but not under strong H2O2 stimulation. NAD+ recovery was mediated by nicotinamide (NAM) phosphoribosyltransferase (NAMPT)-dependent synthesis via the NAD+ salvage pathway, which was suggested to be impaired only under strong H2O2 stimulation. Furthermore, downstream of NAD+, the dynamics of the intracellular ATP concentration paralleled those of NAD+, and ATP-dependent caspase-9 activation via apoptosome formation was thus impaired under strong H2O2 stimulation. Collectively, these findings suggest that NAD+ dynamics balanced by PARP1-dependent consumption and NAMPT-dependent production are important to determine the form of cell death activated under oxidative stress.

10.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101972

RESUMO

Neuroinflammation is well known to be associated with neurodegenerative diseases. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that has been implicated in neuroinflammation, but its precise cellular and molecular mechanisms remain unknown. In this study, we generated conditional knockout (CKO) mice that lack ASK1 in T cells, dendritic cells, microglia/macrophages, microglia, or astrocytes, to assess the roles of ASK1 during experimental autoimmune encephalomyelitis (EAE). We found that neuroinflammation was reduced in both the early and later stages of EAE in microglia/macrophage-specific ASK1 knockout mice, whereas only the later-stage neuroinflammation was ameliorated in astrocyte-specific ASK1 knockout mice. ASK1 deficiency in T cells and dendritic cells had no significant effects on EAE severity. Further, we found that ASK1 in microglia/macrophages induces a proinflammatory environment, which subsequently activates astrocytes to exacerbate neuroinflammation. Microglia-specific ASK1 deletion was achieved using a CX3CR1CreER system, and we found that ASK1 signaling in microglia played a major role in generating and maintaining disease. Activated astrocytes produce key inflammatory mediators, including CCL2, that further activated and recruited microglia/macrophages, in an astrocytic ASK1-dependent manner. Astrocyte-specific analysis revealed CCL2 expression was higher in the later stage compared with the early stage, suggesting a greater proinflammatory role of astrocytes in the later stage. Our findings demonstrate cell-type-specific roles of ASK1 and suggest phase-specific ASK1-dependent glial cell interactions in EAE pathophysiology. We propose glial ASK1 as a promising therapeutic target for reducing neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , MAP Quinase Quinase Quinase 5/imunologia , Microglia/imunologia , Esclerose Múltipla/imunologia , Transdução de Sinais/imunologia , Animais , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/genética , Inflamação/genética , Inflamação/imunologia , MAP Quinase Quinase Quinase 5/genética , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Esclerose Múltipla/genética , Transdução de Sinais/genética , Linfócitos T/imunologia
11.
Antioxid Redox Signal ; 37(10-12): 631-646, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35018792

RESUMO

Aims: The circadian clock oscillates in a cell-autonomous manner with a period of ∼24 h, and the phase is regulated by various time cues such as light and temperature through multiple clock input pathways. We previously found that osmotic and oxidative stress strongly affected the circadian period and phase of cellular rhythms, and triple knockout of apoptosis signal-regulating kinase (ASK) family members, Ask1, Ask2, and Ask3, abolished the phase shift (clock resetting) induced by hyperosmotic pulse treatment. We aimed at exploring a key molecule(s) and signaling events in the clock input pathway dependent on ASK kinases. Results: The phase shift of the cellular clock induced by the hyperosmotic pulse treatment was significantly reduced by combined deficiencies of the clock(-related) genes, Dec1, Dec2, and E4 promoter-binding protein 4 (also known as Nfil3) (E4bp4). In addition, liquid chromatography mass/mass spectrometry (LC-MS/MS)-based proteomic analysis identified hyperosmotic pulse-induced phosphorylation of circadian locomotor output cycles caput (CLOCK) Ser845 in an AKT-dependent manner. We found that AKT kinase was phosphorylated at Ser473 (i.e., activated) in response to the hyperosmotic pulse experiments. Inhibition of mechanistic target of rapamycin (mTOR) kinase by Torin 1 treatment completely abolished the AKT activation, suppressed the phosphorylation of CLOCK Ser845, and blocked the clock resetting induced by the hyperosmotic pulse treatment. Innovation and Conclusions: We conclude that mTOR-AKT signaling is indispensable for the CLOCK Ser845 phosphorylation, which correlates with the clock resetting induced by the hyperosmotic pulse treatment. Immediate early induction of the clock(-related) genes and CLOCK carboxyl-terminal (C-terminal) region containing Ser845 also play important roles in the clock input pathway through redox-sensitive ASK kinases. Antioxid. Redox Signal. 37, 631-646.


Assuntos
Ritmo Circadiano , Proteínas Proto-Oncogênicas c-akt , Cromatografia Líquida , Ritmo Circadiano/genética , Pressão Osmótica , Proteômica , Sirolimo , Serina-Treonina Quinases TOR , Espectrometria de Massas em Tandem , Fatores de Transcrição/metabolismo
12.
Sci Rep ; 11(1): 22009, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34759307

RESUMO

Recent studies have shown that adipose tissue is an immunological organ. While inflammation in energy-storing white adipose tissues has been the focus of intense research, the regulatory mechanisms of inflammation in heat-producing brown adipose tissues remain largely unknown. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical regulator of brown adipocyte maturation; the PKA-ASK1-p38 axis facilitates uncoupling protein 1 (UCP1) induction cell-autonomously. Here, we show that ASK1 suppresses an innate immune pathway and contributes to maintenance of brown adipocytes. We report a novel chemical pull-down method for endogenous kinases using analog sensitive kinase allele (ASKA) technology and identify an ASK1 interactor in brown adipocytes, receptor-interacting serine/threonine-protein kinase 2 (RIPK2). ASK1 disrupts the RIPK2 signaling complex and inhibits the NOD-RIPK2 pathway to downregulate the production of inflammatory cytokines. As a potential biological significance, an in vitro model for intercellular regulation suggests that ASK1 facilitates the expression of UCP1 through the suppression of inflammatory cytokine production. In parallel to our previous report on the PKA-ASK1-p38 axis, our work raises the possibility of an auxiliary role of ASK1 in brown adipocyte maintenance through neutralizing the thermogenesis-suppressive effect of the NOD-RIPK2 pathway.


Assuntos
Adipócitos Marrons/metabolismo , MAP Quinase Quinase Quinase 5/farmacologia , Proteínas Adaptadoras de Sinalização NOD/efeitos dos fármacos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Animais , Citocinas/análise , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Camundongos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Desacopladora 1/efeitos dos fármacos
13.
Placenta ; 115: 60-69, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560329

RESUMO

INTRODUCTION: Disturbance in placental epigenetic regulation contributes to the pathogenesis of preeclampsia (PE). Although aberrant placental DNA methylation status in PE has been thoroughly studied, the role of histone modifications, including histone methylation, in PE remains unclear. Moreover, no study has ever reported the association between PE and placental histone methylation status by focusing on histone methyltransferases. The present study aimed to investigate the possible involvement of placental epigenetic regulation by histone methylation via histone methyltransferases in the pathophysiology of PE. METHODS: Placental mRNA expression of histone methyltransferases was examined using quantitative RT-PCR. Protein expression of histone methyltransferases and histone methylation status in placentas and trophoblast cell lines were assessed by immunoblotting and immunohistochemistry. RESULTS: Expression profile of histone methyltransferases in the placentas using quantitative RT-PCR revealed that the mRNA expression levels of histone 3 lysine 4 (H3K4) methyltransferases, SETD1A and SMYD3, were significantly increased in placentas from PE patients. Immunoblotting and immunohistochemistry revealed that not only protein expression levels of SETD1A and SMYD3, but also H3K4 methylation status was increased in the trophoblasts from PE placentas. In vitro studies using HTR-8/SV-neo and BeWo cells showed that hypoxia induced the expression levels of SETD1A and SMYD3, and subsequently enhanced H3K4 methylation. Furthermore, the overexpression of SETD1A and SMYD3 in HTR-8/SV-neo cells enhanced H3K4 methylation in response to hypoxia. DISCUSSION: Our study results suggest that placental epigenetic alteration by enhanced histone H3K4 methylation through upregulated SETD1A and SMYD3 might play a role in the pathophysiological process of PE associated with hypoxia.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Hipóxia/fisiopatologia , Placenta/enzimologia , Pré-Eclâmpsia/enzimologia , Adulto , Hipóxia Celular , Linhagem Celular , Epigênese Genética , Feminino , Histona Metiltransferases , Humanos , Metilação , Placenta/fisiopatologia , Pré-Eclâmpsia/fisiopatologia , Gravidez , RNA Mensageiro/análise , Trofoblastos/metabolismo , Regulação para Cima
14.
iScience ; 24(7): 102758, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355142

RESUMO

Derlin family members (Derlins) are primarily known as components of the endoplasmic reticulum-associated degradation pathway that eliminates misfolded proteins. Here we report a function of Derlins in the brain development. Deletion of Derlin-1 or Derlin-2 in the central nervous system of mice impaired postnatal brain development, particularly of the cerebellum and striatum, and induced motor control deficits. Derlin-1 or Derlin-2 deficiency reduced neurite outgrowth in vitro and in vivo and surprisingly also inhibited sterol regulatory element binding protein 2 (SREBP-2)-mediated brain cholesterol biosynthesis. In addition, reduced neurite outgrowth due to Derlin-1 deficiency was rescued by SREBP-2 pathway activation. Overall, our findings demonstrate that Derlins sustain brain cholesterol biosynthesis, which is essential for appropriate postnatal brain development and function.

15.
EMBO Rep ; 22(5): e51532, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33822458

RESUMO

Ferroptosis has recently attracted much interest because of its relevance to human diseases such as cancer and ischemia-reperfusion injury. We have reported that prolonged severe cold stress induces lipid peroxidation-dependent ferroptosis, but the upstream mechanism remains unknown. Here, using genome-wide CRISPR screening, we found that a mitochondrial Ca2+ uptake regulator, mitochondrial calcium uptake 1 (MICU1), is required for generating lipid peroxide and subsequent ferroptosis under cold stress. Furthermore, the gatekeeping activity of MICU1 through mitochondrial calcium uniporter (MCU) is suggested to be indispensable for cold stress-induced ferroptosis. MICU1 is required for mitochondrial Ca2+ increase, hyperpolarization of the mitochondrial membrane potential (MMP), and subsequent lipid peroxidation under cold stress. Collectively, these findings suggest that the MICU1-dependent mitochondrial Ca2+ homeostasis-MMP hyperpolarization axis is involved in cold stress-induced lipid peroxidation and ferroptosis.


Assuntos
Proteínas de Transporte de Cátions , Ferroptose , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Resposta ao Choque Frio , Humanos , Potencial da Membrana Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
16.
Cell Death Discov ; 7(1): 75, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846306

RESUMO

Both CDKN1A (p21 Waf1/Cip1) and Apoptosis signal-regulating kinase 1 (ASK1) play important roles in tumorigenesis. The role of p21 Waf1/Cip1 in attenuating ASK1-induced apoptosis by various stress conditions is well established. However, how ASK1 and p21 Waf1/Cip1 functionally interact during tumorigenesis is still unclear. To address this aspect, we crossed ASK1 knockout (ASK1KO) mice with p21 Waf1/Cip1 knockout (p21KO) mice to compare single and double-mutant mice. We observed that deletion of p21 Waf1/Cip1 leads to increased keratinocyte proliferation but also increased cell death. This is mechanistically linked to the ASK1 axis-induced apoptosis, including p38 and PARP. Indeed, deletion of ASK1 does not alter the proliferation but decreases the apoptosis of p21KO keratinocytes. To analyze as this interaction might affect skin carcinogenesis, we investigated the response of ASK1KO and p21KO mice to DMBA/TPA-induced tumorigenesis. Here we show that while endogenous ASK1 is dispensable for skin homeostasis, ASK1KO mice are resistant to DMBA/TPA-induced tumorigenesis. However, we found that epidermis lacking both p21 and ASK1 reacquires increased sensitivity to DMBA/TPA-induced tumorigenesis. We demonstrate that apoptosis and cell-cycle progression in p21KO keratinocytes are uncoupled in the absence of ASK1. These data support the model that a critical event ensuring the balance between cell death, cell-cycle arrest, and successful divisions in keratinocytes during stress conditions is the p21-dependent ASK1 inactivation.

17.
Cell Physiol Biochem ; 55(S1): 135-160, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33877747

RESUMO

Cells are constantly exposed to the risk of volume perturbation under physiological conditions. The increase or decrease in cell volume accompanies intracellular changes in cell membrane tension, ionic strength/concentration and macromolecular crowding. To avoid deleterious consequences caused by cell volume perturbation, cells have volume recovery systems that regulate osmotic water flow by transporting ions and organic osmolytes across the cell membrane. Thus far, a number of biomolecules have been reported to regulate cell volume. However, the question of how cells sense volume change and modulate volume regulatory systems is not fully understood. Recently, the existence and significance of phaseseparated biomolecular condensates have been revealed in numerous physiological events, including cell volume perturbation. In this review, we summarize the current understanding of cell volume-sensing mechanisms, introduce recent studies on biomolecular condensates induced by cell volume change and discuss how biomolecular condensates contribute to cell volume sensing and cell volume maintenance. In addition to previous studies of biochemistry, molecular biology and cell biology, a phase separation perspective will allow us to understand the complicated volume regulatory systems of cells.


Assuntos
Membrana Celular/metabolismo , Tamanho Celular , Animais , Citoplasma/metabolismo , Humanos , Pressão Osmótica/fisiologia
18.
Nat Commun ; 12(1): 1353, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649309

RESUMO

Cells are under threat of osmotic perturbation; cell volume maintenance is critical in cerebral edema, inflammation and aging, in which prominent changes in intracellular or extracellular osmolality emerge. After osmotic stress-enforced cell swelling or shrinkage, the cells regulate intracellular osmolality to recover their volume. However, the mechanisms recognizing osmotic stress remain obscured. We previously clarified that apoptosis signal-regulating kinase 3 (ASK3) bidirectionally responds to osmotic stress and regulates cell volume recovery. Here, we show that macromolecular crowding induces liquid-demixing condensates of ASK3 under hyperosmotic stress, which transduce osmosensing signal into ASK3 inactivation. A genome-wide small interfering RNA (siRNA) screen identifies an ASK3 inactivation regulator, nicotinamide phosphoribosyltransferase (NAMPT), related to poly(ADP-ribose) signaling. Furthermore, we clarify that poly(ADP-ribose) keeps ASK3 condensates in the liquid phase and enables ASK3 to become inactivated under hyperosmotic stress. Our findings demonstrate that cells rationally incorporate physicochemical phase separation into their osmosensing systems.


Assuntos
Lubrificação , Pressão Osmótica , Poli Adenosina Difosfato Ribose/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Citocinas/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/ultraestrutura , Modelos Moleculares , Mutação/genética , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Domínios Proteicos
19.
Cancer Sci ; 112(4): 1633-1643, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33565179

RESUMO

Tumor metastasis is the leading cause of death worldwide and involves an extremely complex process composed of multiple steps. Our previous study demonstrated that apoptosis signal-regulating kinase 1 (ASK1) deficiency in mice attenuates tumor metastasis in an experimental lung metastasis model. However, the steps of tumor metastasis regulated by ASK1 remain unclear. Here, we showed that ASK1 deficiency in mice promotes natural killer (NK) cell-mediated intravascular tumor cell clearance in the initial hours of metastasis. In response to tumor inoculation, ASK1 deficiency upregulated immune response-related genes, including interferon-gamma (IFNγ). We also revealed that NK cells are required for these anti-metastatic phenotypes. ASK1 deficiency augmented cytokine production chemoattractive to NK cells possibly through induction of the ligand for NKG2D, a key activating receptor of NK cells, leading to further recruitment of NK cells into the lung. These results indicate that ASK1 negatively regulates NK cell-dependent anti-tumor immunity and that ASK1-targeted therapy can provide a new tool for cancer immunotherapy to overcome tumor metastasis.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Metástase Neoplásica/patologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Imunoterapia/métodos , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/imunologia , Células RAW 264.7
20.
J Biochem ; 169(4): 395-407, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33377973

RESUMO

VCells are constantly exposed to various types of stress, and disruption of the proper response leads to a variety of diseases. Among them, inflammation and apoptosis are important examples of critical responses and should be tightly regulated, as inappropriate control of these responses is detrimental to the organism. In several disease states, these responses are abnormally regulated, with adverse effects. Apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases that regulate inflammation and apoptosis after a variety of stimuli, such as oxidative stress and endoplasmic reticulum stress. In this review, we summarize recent reports on the ASK family in terms of their involvement in inflammatory diseases, focussing on upstream stimuli that regulate ASK family members.


Assuntos
Apoptose , Proteínas de Ciclo Celular/metabolismo , Estresse do Retículo Endoplasmático , Estresse Oxidativo , Proteínas de Ciclo Celular/genética , Humanos , Inflamação/enzimologia , Inflamação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...